Intelligent O&M Platform for Offshore Wind Farms

Talk to a Data Platform Expert today.

1. Executive Summary

A leading European renewable energy giant, managing over 12 GW of offshore wind assets across Northern Europe, sought to improve operational efficiency, asset longevity, and safety.

The Challenge:

  • -Fragmented telemetry

  • -Manual analysis delays

  • -Siloed enterprise systems

The Solution:

unified, intelligent data and analytics platform, powered by a cloud-native lakehouse architecture on Azure and Databricks, designed to:

 ✔ Ingest & process IoT/enterprise data (SCADA, SAP, GIS, MetOcean)
 ✔ Enable predictive maintenance for critical components (cables, gearboxes, substructures, aviation lights)
 ✔ Provide real-time operational dashboards
 ✔ Use a hybrid modeling approach (Data Vault 2.0 + Kimball) for historical lineage + business analytics

2. Objectives

The key objectives of the program were:

        ✅ Unify SCADA, ERP, and sensor data into a centralized data lakehouse
        🔍 Enable real-time asset monitoring and condition-based alerts
        ⚙️ Deploy predictive maintenance models for critical components
        📈 Improve asset availability and reduce unplanned downtime
        📊 Deliver actionable dashboards for technicians and executives
        🛡️ Ensure governance, security, and data lineage across all domains

3. Data Sources & Domains

The platform aggregated streaming and batch data from diverse sources:

DomainSource SystemData TypeFrequency
SCADA SystemsTurbine & substation PLCsVibration, speed, temperatureStreaming
CMS (Condition Monitoring)Lubrication sensorsGrease & Oil level, qualityStreaming
ERP/CMMSSAP S/4HANA, IBM MaximoMaintenance, inventoryDaily batch
CRMSalesforce, ServiceNowService ticketsBatch
MetOceanWeather & ocean sensorsWind, wave, icing dataStreaming/API
GIS & Asset ModelsEsri ArcGIS, BIM modelsGeospatial, topologyWeekly batch
Aviation LightsSensor networksStatus, alarmsStreaming
Icing SensorsHub-mounted IoT devicesHumidity, temperatureStreaming

4. Architecture Overview

4.1 Platform Stack

LayerTechnology Stack
IngestionKafka, Azure IoT Hub, Event Hubs, Azure Data Factory
ProcessingAzure Databricks (Structured Streaming, Delta Live Tables)
StorageADLS Gen2 with Delta Lake (bronze, silver, gold zones)
Data ModelingKimball (for BI) + Data Vault 2.0 (for integration/history)
Analytics/MLMLflow, PySpark, TensorFlow, Feature Store on Databricks
ReportingPower BI, Azure Analysis Services
GovernanceUnity Catalog, Purview, RBAC, GDPR tagging

5. Data Modeling Approach

 
 Used in the silver layer for raw historical integration:
  • -Hubs: Turbine_HubComponent_HubMaintenanceTicket_Hub

  • -Links: Turbine_Component_LinkTicket_Turbine_Link

  • -Satellites: Sensor_Telemetry_SatLubrication_SatCondition_Sat

5.2 Kimball Star Schema

Used in the gold layer for dashboarding & self-service analytics:

  • FactTables: Fact_Turbine_HealthFact_Lubrication_EventsFact_Cable_FaultsFact_Maintenance_Actions

  • Dimensions: Dim_TurbineDim_ComponentDim_LocationDim_TimeDim_FaultType

6. Key Analytics Use Cases

6.1 Predictive Maintenance

ComponentAnalytics FocusMethodology
CablesThermal load & degradationTime-series clustering, anomaly detection
Sub-structuresCondition Monitoring (SSCM)Vibration signatures, FFT analysis
GearboxesVibration + temperaturePredictive ML (XGBoost)
BearingsLubrication analyticsPredict wear rate via regression
Aviation LightsFault prediction & complianceReal-time alerting & threshold detection
IcingForecasting turbine icing eventsLSTM-based weather model
PowerPower forecastLSTM-based power/weather model

6.2 Real-Time Operational Dashboards

Built using Power BI + DirectQuery to Delta Lake, featuring:

✔ Live turbine health status
✔ Icing risk map (by wind park)
✔ Cable degradation risk heatmaps
✔ SSCM alerts dashboard
✔ Work order backlog & MTTR analytics
✔ Inventory & spare part availability
✔ Power trends

Alerts delivered via Teams, mobile, and email using Azure Logic Apps.

7. Implementation Timeline

PhaseKey Activities
Phase 1: Platform FoundationKafka & Azure provisioning, lakehouse zones, initial SCADA/SAP ingestion
Phase 2: Data IntegrationData Vault & Kimball layers, streaming pipelines, SAP model integration
Phase 3: Advanced AnalyticsML model training (historical failures), MLflow deployment, cable/gearbox models
Phase 4: Visualisation & AlertingPower BI dashboards, SSCM/icing alerts, Unity Catalog rollout

8. Business Outcomes

MetricBefore ImplementationAfter Platform Launch
Unplanned Downtime (avg/month)18 hours< 5 hours
Cable Failure Incidents (yearly)~123
MTTR (Mean Time to Repair)>72 hours<28 hours
Maintenance Cost (per turbine)>€12,000/year<€7,000/year
Data Access Time (analytics)DaysMinutes
Regulatory Response TimeManual, slow<1 hour (auditable)

9. Challenges & Solutions

ChallengeResolution
Massive SCADA data volumesDelta Lake optimisations (Z-Ordering, OPTIMISE, Auto Compaction)
Disparate systems (SAP, GIS, CRM)Unified schema via Data Vault, ADF pipelines
Real-time + historical harmonisationBronze-silver-gold zoning + time-windowed joins
GDPR & asset access securityRow/column-level security via Unity Catalog & Purview
Offshore network latencyEdge buffering + Azure IoT Edge + deduplication logic

10. Future Roadmap

  • -Digital Twin Integration – Full-park simulations & virtual commissioning

  • -Reinforcement Learning – Optimise turbine behavior under failure scenarios

  • -3D GIS Integration – Overlay BIM/geospatial models for immersive insights

  • -AI Co-Pilot – NLP-based field support with telemetry lookups

  • -Sustainability KPIs – CO₂ offset, biodiversity impact, seabed disturbance models


11. Conclusion

This intelligent O&M platform marks a shift from reactive to predictive operations, leveraging Azure + Databricks to transform data into a strategic asset—enabling smarter, safer, and more sustainable energy production.

Leave a Reply

Your email address will not be published. Required fields are marked *